
46

p
a
p

e
rs

2005spark

Acousmatics, Sound Objects and Instruments of Music
Dr. Marcus Alessi Bittencourt, College of William and Mary (mabitt@wm.edu)

Abstract: Based on propositions by Pierre Schaeffer, this paper will demonstrate in what capacity the computer should be
regarded not as a musical instrument in itself, but as a virtual arena where pseudo musical instruments are instantiated. A
case study that addresses these concerns is provided.

1.1 Intention
The intention here is to gain a truer understanding of

the role of Computers and their algorithmical minds in
the composition of Electroacoustic Music and to be able
to design and operate virtual musical instruments which
refl ect the phenomenological perceptual concerns posed
by acousmatic listening, the Schaefferian Écoute Réduite
[Schaeffer 1966].

1.2 Musical Instrument
In chapters 2,4-2,5 of his “Traité”, Pierre Schaeffer

[Schaeffer 1966] defi ned a musical instrument as being a
sound-producing device endowed with three characteristics.
First, the device has the property of endowing its sounds
with a particular timbre, a “marque d’origine”, that allows
us to recognize all the sounds as coming from the same
source. Second, the device possesses a gamut of possible
physical manipulations that, when applied, produce the
gamut of available sounds. Third, it possesses a collection
of playing modes, of manners of playing, in other words,
a playing style.

1.3 Pseudo Musical Instrument
Due to the supreme generality of their sound-

producing capabilities, devices such as the computer, the
tape recorder, the sampler, normally used to manufacture
Electroacoustic Music, in themselves cannot constitute
musical instruments. Nonetheless, this equipment can
be used to produce pseudo-musical instruments, that is,
virtual instruments that do not exist in the real world (they
only exist in the form of electroacoustic simulations) but
nonetheless possess the same three characteristics that
Schaeffer isolated for a musical instrument: an origin mark
(phenomenological timbre), a finite gamut of possible
physical manipulations (and their resulting gamut of
available sounds), and a style of playing.

Thus, it is important to realize that when one controls
computer audio software through computer interfaces of
any kind, one is not actually playing the computer itself
as a musical instrument. Instead, it is the simulation the
computer instantiated which is being played.

According to the extent that his simulations conform

to this notion of Musical Instrument, the artist-musician
will be dealing with phenomenological ideas of solos,
duos, trios, and so on, all the way to orchestras of these
virtual instruments.

With this pondered, in order to design such simulations
of a Musical Instrument one should consider the perceptual
unity of the Sound Objects [Schaeffer 1966] produced by
the simulation, and how these are assembled into Musical
Objects through the operation of a Musical System.

2.1 Acousmatics and Sound Objects
 Originally, “acousmatic” was the name given to the

disciples of Pythagoras who, for fi ve years, had to listen to
the lessons from behind a curtain, without seeing the master
and in absolute silence. Resuscitated, this term is now
used to defi ne a sound that one listens without “seeing” (=
caring for) the source where it comes from, a sound that
disconnects from its source and becomes something else,
a sound that disincarnates from its daily ordinary function
of Source Index, thus entering the realm of Music.

It is this acousmatic way of listening that brought forth
the Schaefferian term of “Sound Object”: a perceptually
cohesive sound event, listened with an acousmatic
intention, in other words, perceived and appreciated for
its own sound-value sake.

2.2 Musical Object
A Musical Object [Bittencourt 2003] is a collection of

Sound Objects of any size, small or big, that encloses in
itself a single and recognizable complete thought. Because
it represents a complete thought, it has a defi nite beginning
and an end: its boundaries can be assessed. Because it is
recognizable, it can be repeated, varied, transmutated,
combined with other objects, traced by our memory.

According to its “main course”, to its foreground main
ideas, a musical object can be said to gravitate between two
poles: static, if the spotlight is focused on the constituent
sound elements themselves, or dynamic, if the spotlight is
focused on the internal evolution of the constituent sound
elements.

In reality, all musical objects fluctuate somewhere
between these two antipodes. The “static” nature refers

FRIDAY, FEBRUARY 18

47

p
a
p

e
rs

2005spark FRIDAY, FEBRUARY 18

to operations in Musical Space, the “dynamic” nature, to
operations in Musical Time [Bittencourt 2003].

2.3 Musical System
A Musical System is any set of rules that directly

restricts the choices of sound possibilities. In other words,
it is a set of constraints. To invent a Musical System is to
create a set of rules that limit the use of the continuum of
the characteristics of sound and that specify the universe
of manipulations possible.

3.1 Case Study of Pseudo Musical Instrument
and Musical System

I will here describe a reasonably-successful
collection of algorithms I created for the seventh scene
of my radiophonic opera KA, based on a story by Vielimir
Khlebnikov. The interest here is that these algorithms
materialize at the same time a pseudo-musical instrument
and a Musical System with a precise collection of possible
notes and timbres distributed in space, strict rules for
manipulating these possibilities, and a complex rhythmical
system.

3.2 General Description
Scene seven is supposed to contain an instrument

made of an elephant tusk with fi ve strings (later on, six)
attached to the tusk by pegs of years. The fi ve years on
top show the times when the East invaded the West, and
the fi ve in the bottom, when the West invaded the East. It
is also mentioned in Khlebnikov’s story that each string is
divided in six parts. Trying to conceive an image of this
fantastic instrument, I thought of a C++ class that would
“speak” through the RTcmix STRUM instrument.

First, I studied what happens when a string is divided
in six equal parts. With frets positioned at those six points,
your string will be set to play an inverted harmonic series:

if 1x string length produces C3, for example, (5/6)x gives
Eb3, (4/6)x gives G3, (3/6)x gives C4, (2/6)x gives G4,
(1/6)x gives G5, everything in the natural tuning of the
harmonic series, obviously.

Because this tusk harp was supposed to accompany
the character Laili singing, I wanted it to use the “Laili
mode”, a microtonal scale I developed using another piece
of software of mine, the ModeGenerator (see Figure 1).
Thus, I searched for possibilities of fi nding six collections
of six notes in this mode that could conform to that “minor
chord” formation described above, with a maximum
margin of error of a quarter tone, as if the strange tuning
generated from the use of the Laili mode was derived from
the frets being positioned slightly off from the equal string
subdivisions.

To prevent the instrument from playing only arpeggios,
the fingers were thought to move across and not along
the strings. I was supposed to imagine fi ve virtual fi ngers
moving across the fretboards according to strict rules of
fi ngering.

Each string of the tusk harp has its own fixed
stereophonic positioning and a unique set of STRUM
parameters so that each string possesses a different
particular timbre. Also, a string has to be prepared to never
play two notes at the same time. Unless it is played again,
the string has to continue vibrating till the extinction of
the sound, but if a string is still vibrating when a new
pluck order is given, the previous note has to be stopped
accordingly.

3.3 Implementation
 To code such an instrument in C++, I designed a

system of 3 classes.
A Strumline class is used to hold an RTcmix STRUM

command and to keep track of its current state, if it is

Fig. 1. Structure of Laili’s Mode, and Tusk Harp strings

48

p
a
p

e
rs

2005spark

still alive (vibrating, that is), or not. There are four basic
methods: one to set the STRUM command line, one
to recall it, one that verifi es if the previous note is still
vibrating, and one that adjusts the length of the previous
note (i.e. turns it off).

Next, we have a Tusk_String class that contains one
Strumline object and is used to control all the operations
necessary for a string to play. Here we have fi ve methods:
one to set the output printing stream, one to set the pitches
(in Hz) for each of the six positions along the string (fi ve
frets plus the open string), one to set the STRUM timbral
parameters and the stereophonic positioning for the string,
one to receive and realize playing commands, and fi nally,
one method to fl ush the last Strumline class buffer.

Finally, we have the Tusk_Harp class, which contains
six Tusk_String objects (one for each string, of course). The
constructor method initializes the strings with the STRUM
timbral parameters selected, their stereophonic positioning,
and the pitches that the string frets are supposed to play.
The Play() method, the one used inside another program
to actually play the harp, receives only the parameters
string, fret, point in time to start playing, and amplitude.
It functions basically as a routing system, relaying the
information to the appropriate string.

With all this, the very complex operations required to
play the tusk harp and materialize its results into sound are
hidden from the main user. Inside the actual algorithm that
generates a musical piece, the user has access to the Harp
simply by calling its Play() method.

The next step to play the Tusk Harp is to formalize the
fi ngering rules. Remember that the fi ngers are thought to
move across the fretboard and the strings, and that you can
play with all fi ve fi ngers.

When moving fret-wise (horizontally, if we imagine
the strings running parallel to the ground), we can either
keep in the same fret, move to its neighbors or to no fret
(open string). From an open string, we can return to any
fret. String-wise (vertically), you can move according to
the availability of fi ngers. The fi ngers are numbered from
1 to 5, in reverse order than the piano fi ngering tradition.
You can move to a new string if there is a fi nger available
in that direction, remembering that two adjacent fi ngers
do not have to necessarily move string by string, that is,
jumps are allowed.

Chords up to six notes are possible and depend on

the position of fi ngers at each moment. Since from a fret
you can only reach its neighbors, only two adjacent fret
regions (of different strings, obviously) can be stopped
simultaneously. For a six note chord, at least one of the
notes has to come from an open string.

All this has been programmed into two methods: one
that performs the melodic changes of position, and one
that creates chords.

Finally, to make the tusk harp play some musical
fragment, we still have to add rhythmical procedures. The
one I used here is based on a fi xed row of a user-defi ned
number of durations. These durations are chosen at the
beginning of the algorithm, between 0.3 and 1.0 second,
scaled by a “speed” proportion also defi ned by the user. The
way to deploy this set of durations is a little bit intricate,
but it generates very interesting “syncopations”.

First, a certain number of successive notes to play is
defi ned, chosen between 2 and 7. The durations are always
used in the same order they were originally chosen, but
the fi rst action performed for a successive group of notes
is to hold the duration on the top of the pile as a rest to
be performed at the END of the group of notes. As an
example, fi gure 2 shows the rhythmical result when we
have a row of three durations, a, b and c, and we play
three groups of notes with lengths of 4, 2, and 4 notes,
respectively.

The main program will be controlled by the user. At
the command line of the program, he has to define the
name for the output soundfi le, the total duration of the
musical fragment, the speed (the multiplication factor for
the row of durations), the forbidden string (because the
instrument will sometimes have only five strings), the
number of elements of the duration row, the sound output
mode (real time or disk space), and a random seed. The
output result of the program is identical every time you run
it with the same seed.

4.1 The Function of Algorithmical
Composition

Although the decisions of what to play in the Tusk
Harp example are made randomly, these decisions revolve
around a system of probabilities based on strict sets of
constraints. As you would expect from a Musical System,
these algorithms “taint” the sounds that come from it in a
very recognizable way. For example, the horizontal profi le

Fig. 2. Rhythmical procedure for the Tusk Harp

FRIDAY, FEBRUARY 18

49

p
a
p

e
rs

2005spark FRIDAY, FEBRUARY 18

of the harp melodies and the structure of its chords are
totally dependent on the fingering rules. An important
point to notice is that these algorithms were created not
to generate a musical passage, but to generate kindred
musical materials. Here we have a fi nite set of possible
sounds, carefully chosen so that they all seem to emanate
from the same source (they bear the same “origin mark”,
the same phenomenological timbre), and we also have
a playing style, generated from the coupling of the
rhythmical system and the fi ngering rules. In other words,
the C++ code materializes a pseudo musical instrument,
in Schaefferian terms.

References
[Bittencourt 2003] Bittencourt, Marcus A. “Doctor Frankenstein, I Presume...

or The Art of Vivisection”. Doctoral dissertation at Columbia University, New
York, 2003.

Khlebnikov, Vielimir. KA. inside The King of Time . Harvard University Press,
Cambridge, Mass., 1985.

[Schaeffer 1966] Schaeffer, Pierre. Traité des Objets Musicaux. Éditions du
Seuil, Paris, 1966.

